
Phenylboronic acid-terminated viologen-carrying alkyl
disulfide (1) and a reference compound 2 were designed and
synthesized.  Self-assembled monolayers of 1 on gold elec-
trodes were found to function as a highly sensitive saccharide
sensor in aqueous solution.

The interaction of phenylboronic acids and compounds
with vic-diols can be detectable in water by several methods
including fluorescence spectroscopy1 and an electrochemical
technique2.  Our goal is to design and construct self-assembled
monolayers of a phenylboronic acid-carrying electroactive
compound on an electrode that performs electrochemical com-
munication with saccharides in aqueous solution.  For this pur-
pose, we synthesized 1,1"-(dithiodi-6,1-hexanediyl)bis[1'-(4-
dihydroxyboryl)phenylmethyl-4,4'-bipiridinium] tetrakis(hexa-
fluorophosphate) (1).  Recently, Olliff and co-workers3 pre-
pared a self-assembled monolayer (SAM) of a phenylboronic
acid-terminated alkanethiol on a gold electrode and examined
the response to nicotinamide adenine dinucleotide by means of
surface plasmon resonance measurements.  Kitano and co-
workers4 described sugar recognition by a phenylboronic acid-
carrying SAM on a gold colloid or a gold electrode detected,
respectively, by UV–vis absorption change and by cyclic
voltammetry using an electroactive marker.  Here we describe
first electrochemical saccharide sensing with a redox active
phenylboronic acid-terminated SAM on a gold electrode.

The synthesis of 1 is as follows.  4-(1,3-Dioxa-2-boranyl)
benzyl bromide5 was reacted with 4,4'-bipyridyl in CH3CN at
refluxed temperature for 13 h to produce 4-(4-pyridyl)-N-(4-
(1,3-dioxa-2-boranyl)benzyl)pyridinium bromide, which was
reacted with 6-thiobenzoyloxy-1-bromohexane in DMF at 60
˚C for 48 h, followed by hydrolysis with concd HCl and then
ion exchange with potassium hexafluorophosphate.  Compound
16 was obtained as a white solid.  1,1"-(Dithiodi-6,1-hexa-
nediyl)bis(1'-benzyl-4,4'-bipiridinium) tetrakis(hexafluorophos-
phate), 27, a reference compound of 1, was synthesized by a
similar procedure.

A mirror-polished polycrystalline gold disk electrode (BAS
Co., geometrical area: 2.01 mm2) was immersed in 1.0 mmol
dm–3 of 1 (or 2) in methanol for 24 h and then rinsed with
methanol and then with 0.1 mol dm–3 potassium hexafluo-
rophosphate aqueous solution.  Cyclic voltammogram (CV)
measurements (BAS-100BW) for the obtained electrodes (1-
SAM/Au and 2-SAM/Au) were carried out in 0.1 mol dm–3

potassium hexafluorophosphate aqueous solution (pH 10.5)
containing given concentration of a saccharide at 23 ± 1 °C in
argon atmosphere using a gold wire and a saturated calomel
electrode (SCE) as the counter and the reference electrodes,
respectively.

Typical CVs for a 1-SAM/Au electrode is shown in Figure
1.  A 2-SAM/Au electrode gave similar CVs (data not shown).
The formal potentials for the first reduction/reoxidation of the
viologen moiety in 1 and 2 obtained from the CVs were –495
and –500 mV, respectively.  Both cathodic and anodic peak
current of the CVs for 1-SAM/Au (Figure 1) and for 2-
SAM/Au (data not shown) at a scan range of 25–200 mV/s
increased linearly with the increase of scan rates, indicating that
the electron transfer of the surface confined species with the
electrode governs the electrochemistry.  The surface coverage
of 1 and 2 calculated from the CVs were (1.3 ± 0.2) × 10–10 and
(1.4 ± 0.2) × 10–10 mol cm–2, respectively.8

Figure 2 shows CVs for a 1-SAM/Au in the absence or
presence of 0.1 mol dm–3 xylose in aqueous solution.  The pres-
ence of xylose causes the shift of the formal potential to nega-
tive direction by 18 mV.  This shift might be explained by the
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stronger binding of the saccharide with the oxidized form of 1
than the reduced form.  On the contrary, no such shift in the for-
mal potential was observed for a 2-SAM/Au electrode.  CVs at
1-SAM/Au electrodes were measured in the presence of given
concentrations of galactose, fructose, mannose, glucose, xylose,
α-methylglucoside and methyl-β-xylopyranoside, and the
observed shifts in E0’ were plotted as a function of saccharide
concentration in Figure 3.  Interesting features observed are as
follows. i) 1-SAM/Au electrodes exhibited a response for
xylose, mannose and fructose at the concentration range of
10–6–10–3 mol dm–3. ii) CV response of the electrode was also
occurred to α-methylglucoside, a compound possessing no 1,2-
diol moiety.  This might be due to the binding of the phenyl-
boronic acid moiety in 1 with the 4- and 6-hydroxy groups in α-

methylglucoside. iii) The electrode had a response to methyl-β-
xylopyranoside, a compound that has no binding site with
phenylboronic acid, at the relatively higher concentrations.
Possible hydrogen bonding between the phenylboronic acid
moiety in 1 with the 2,3-and 4-hydroxy moieties in methyl-β-
xylopyranoside may explain the shift. 

In conclusion, we have found, for the first time, that
phenylboronic acid-terminated redox active SAMs on gold
electrodes respond to a variety of saccharides at relatively low
concentration (ppm order).  Intense effort is currently underway
in our laboratory to reveal fully the characteristics of 1-
SAMs/Au electrodes including the mechanism of the observed
potential shift in the CVs and explore potential applications of
the electrodes as highly sensitive sensors for biological oligo-
and poly(saccharides).
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